
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

SSH - Secure SHell

1

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

Outline

Brief introduction

Protocol details
− The official documentation of SSH has over

100 pages.
− Hence, our presentation is at a high level.

Applications

References

2

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

Brief Introduction

3

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

What is SSH?

• It is a set of standards and associated

protocols to establish a secure channel
between two computers.

• It provides mutual authentication, data
confidentiality, and data integrity.

• Originally, it was designed as a replacement
of insecure applications like r-commands
(i.e., Berkeley remote commands, e.g., rlogin,
rsh, rcp).

4

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

Motivations of Designing the SSH
• The following is a list of drawbacks in some

traditional applications:
– Authentication is based on IP address
– Authentication is based on reusable password
– Data is transmitted in clear text
– X protocol is vulnerable to attack
– Intermediate hosts can hijack sessions

For X protocol, see http://en.wikipedia.org/wiki/X_Window_System

5

http://en.wikipedia.org/wiki/X_Window_System

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0Applications of SSH

Secure remote login (ssh client)

Secure remote command execution
Secure file transfer and backup
(sftp/rsync/scp)
Public-private key pair generation for you
and an agent for taking care of your public-
private key pair
Port forwarding and tunnelling (x11
forwarding and tunnelling using SSH)

6

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

Brief History

• Tatu Ylönen, a researcher at Helsinki University
of Technology, Finland, developed the first
version of SSH in 1995.

• Very popular, 20K users in 50 countries in the
first year.

• Ylönen found the SSH Communications Security
(www.ssh.com) to maintain, develop and
commercialize SSH, in Dec. 1995.

• SSH2 was released in 1998.

7

http://www.ssh.com
http://www.ssh.com

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

Brief History (cont.)

1999, Björn Grönvall developed the OSSH.

“OpenBSD” then extended Grönvall's work,and

launched the OpenSSH project (www.openssh.org),

OpenSSH was ported to Linux, Solaris, AIX,

Mac OS X, Windows (cygwin) and etc.

Currently, OpenSSH is the single most popular

SSH implementation in most operating systems.

Remark: The OpenBSD project produces a FREE, multi-platform UNIX-like operating system.

8

http://www.openssh.org/

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

SSH Implementations

Name UNIX WIN MAC Clients Server FREE

SSH.COM X X X X

OpenSSH X X X X X

F-Secure SSH X X X X X

PuTTY X X X

SecureCRT, SecureFX X X

VShell X X

TeraTerm X X X

MindTerm X X X X X

MacSSH X X X

9

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

• IPSec is a lower level (IP-based) security solution
than SSH. More fundamental but really expensive.
SSH is quicker and easier to deploy.

• SSL or TLS is TCP-based and “mainly” used in WEB
applications.

• There are some SSL-enhanced Telnet/FTP
applications. SSH is a more integrated toolkit
designed just for security.

IPSec & SSL vs. SSH

10

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

Protocol Details

11

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

• SSH protocol is based on a client/server
architecture
– A ssh server running on the server side is listening on

the 22 TCP port for incoming connection

santi@hlt029:~> sudo netstat --tcp --listening --program
tcp6 0 0 *:ssh *:* LISTEN 3075/sshd

– A client who wants to connect to a remote host will

execute the ssh command
santi@PeT43:~> ssh hlt029

SSH Architecture

Remark: Port 22/TCP,UDP: for SSH (Secure Shell) - used for secure logins,
file transfers (scp, sftp) and port forwarding

12

http://en.wikipedia.org/wiki/Secure_shell
http://en.wikipedia.org/wiki/Secure_copy
http://en.wikipedia.org/wiki/SSH_file_transfer_protocol

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

SSH-2 Protocol has the following three building
blocks (RFC 4251, 29 pages):
– Transport Layer (RFC 4253, 31 pages):

Initial key exchange, server authentication, data
confidentiality, data integrity, compression (optional), and
key re-exchange.

– User Authentication Layer (RFC 4252, 16 pages):
Client authentication, provide various authentication
methods.

– Connection Layer (RFC 4254, 28 pages):
Defines the logical channels and the requests to handle the
services like: secure interactive shell session, TCP port
forwarding and X11 forwarding.

Building Blocks

13

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

Building Blocks

14

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

Structure of the Building Blocks

15

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

Outline

Protocol Details
− Transport Layer

− User Authentication Layer

− Connection Layer

16

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

• It is a fundamental building block of SSH.
• It provides services such as the initial

connection, server authentication, data
encryption and data integrity.

• It is used for the negotiation of
cryptographic algorithms.

Transport Layer

17

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

• A key exchange algorithm in the form diffie-hellman-group-
exchange-sha1 for computing a master key and session ID

• A list of client authentication methods and a server
authentication method.

• Two data encryption ciphers for encrypting data in the
two directions.

• Two data integrity algorithms in the form: hmac-
hashfunction.

• Two data compression algorithms for compressing data in
the two directions (optional).

Parameter negotiation details are omitted here (RFC 4253).

Parameters Negotiated by the
Transport Layer

18

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

• After the parameter negotiation, the DH key
exchange protocol is carried out and a master key
is computed.

• Server authentication is done with the public key
of server
• In other words, server authentication is based on the

server’s digital signature.
• Server authentication will be discussed later.

Key Exchange & Server Auth.

19

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

• Based on the shared master key, both sides
compute the data encryption keys and data
integrity keys (details are omitted)
• The two encryption keys are independent
• The two data integrity keys (i.e., authentication keys)

are independent
• After finishing the server authentication and the

key exchange, the client has a single, secure, full
duplex stream to an authenticated server

Computing other Keys

20

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

• The Key Exchange produces two values:
• a shared secret K (master key) and an exchange hash value
H (details are omitted).
• The unique H is used as the Session ID.

• Data flow directions client->server and server->client are
independent, may use different algorithms (i.e. 3DES+SHA1 and
Blowfish+MD5)

• But in practice, it is recommended that the same cipher and
same hash function are used for both directions.
• If compression is enabled, the data is first compressed and
then encrypted.

Remarks on the Parameter
Negotiation

21

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

Server Authentication (continued)

• It is done by verifying the server’s digital

signature with the RSA or DSS public key of
the server.

• If a client is contacting a server with SSH
the first time, the client needs the public key
of the server for server authentication.

• How does the client get the public key of

the server the first time???

22

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

• Two trusted methods:
– the client maintains a local database that associates

each server name and the corresponding public key.
– The client gets the public key of a server from a

trusted 3rd party (e.g. Certification Authority)
– These two methods are rarely used.

• Another Option: server authenticity is not
checked the first time
• After the first connection, the public key of the

server is saved in a database of the client.
• This is the most used method.

How to get server’s public key the
1st time?

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

• Key Exchange:
– diffie-hellman-group1-sha1 [Required]
– diffie-hellman-group14-sha1 [Required]

• Data Encryption:
– 3des-cbc [Required]
– aes128-cbc [Recommended]

• Data Integrity:
– hmac-sha1 [Required],
– hmac-sha1-96 [Recommended]

• Public Key for Authentication:
– ssh-dss [Required]
– ssh-rsa [Recommended]

Required/Recommended Algorithms

24

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

Outline

Protocol Details
− Transport Layer

− User Authentication Layer

− Connection Layer

25

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

• It runs atop of the Transport Layer
• It relies on the data privacy and integrity,

provided by the Transport Layer
• Service ID: “ssh-userauth”
• Several user authentication methods are

available

User Authentication Layer (1)

26

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

• Client requests the service “ssh-userauth”
• Server responds with the list of available

user authentication methods. More than
one user authentication methods may be
required.

• Methods:
– Public key [Required]
– Password
– Host-based

User Authentication Layer (2)

27

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

• User Authentication Request is driven by the
client and has the following parts:
– user name
– service name
– method name

• Authentication Response from the server:

– SUCCESS: user authentication done.
– FAILURE: return a list of user authentication methods

that can continue

User Authent. Request & Server
Response

28

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

Outline

Protocol Details
− Transport Layer

− User Authentication Layer

− Connection Layer

29

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

• It runs over the Transport Layer, and
utilizes the User Authentication Layer

• It multiplexes the encrypted connection
provided by the Transport Layer into
several logical channels

• Channel type:
– Interactive session
– Remote command execution
– An X11 client connection
– TCP/IP port forwarding
– ...

Connection Layer

Please stop and
explain the meaning
of “multiplexing a connection”
using a physical tunnel
through a mountain in HK

30

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

Applications of SSH

31

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

X11 Forwarding

32

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

SSH Port Forwarding

• SSH port forwarding is a mechanism in SSH

for tunneling application ports from the client
machine to the server machine, or vice versa.

• The application data traffic is directed to flow
inside an encrypted SSH connection so that it
cannot be eavesdropped or intercepted while it
is in transit.

• SSH tunneling adds network security to legacy
applications that do not natively support
encryption.

33

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

PORT FORWARDING (CONTINUED)

34

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

PORT FORWARDING (CONTINUED)

35

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

• SCP: copying files btw. hosts by using SSH for
data transfer.

• SFTP: Secure FTP over SSH.

SCP, and SFTP

36

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

• Using “ssh-keygen” you can ask SSH to generate
an RSA or DSA key pair for you, with protection
of your private key from a passphrase:

• SSH will then add your public key into the
server's “authorized_keys” database.
(~/.ssh/authorized_keys)

• Later you can connect to the server by
authenticating yourself with your public key.

SSH Public Key Authentication

37

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

• SSH: The Secure Shell The Definitive Guide 2E
• SSH FAQ

• OPENSSH Project Official Site

• SSH Communications Security

• The Secure Shell (SSH) Protocol Architechture

https://datatracker.ietf.org/doc/html/rfc4251

• The SSH Transport Layer Protocol

https://www.rfc-editor.org/rfc/rfc4253#section-7.1

References

38

http://www.snailbook.com/
file:///C:/home/joseph/Course/COMP685C/presentation/www.openssh.org
file:///C:/home/joseph/Course/COMP685C/presentation/www.ssh.com
file:///C:/home/joseph/Course/COMP685C/presentation/www.ssh.com
file:///C:/home/joseph/Course/COMP685C/presentation/www.ssh.com
file:///C:/home/joseph/Course/COMP685C/presentation/www.ssh.com
file:///C:/home/joseph/Course/COMP685C/presentation/www.ssh.com
http://www.snailbook.com/
file:///C:/home/joseph/Course/COMP685C/presentation/www.employees.org/~satch/ssh/faq/
file:///C:/home/joseph/Course/COMP685C/presentation/www.openssh.org
file:///C:/home/joseph/Course/COMP685C/presentation/www.ssh.com
file:///C:/home/joseph/Course/COMP685C/presentation/www.ssh.com
file:///C:/home/joseph/Course/COMP685C/presentation/www.ssh.com
file:///C:/home/joseph/Course/COMP685C/presentation/www.ssh.com
file:///C:/home/joseph/Course/COMP685C/presentation/www.ssh.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

