
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

GnuPG: Open Encryption,
Signing and Authentication

1

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

What is GnuPG?

GnuPG is the GNU project's complete and free implementation

of the OpenPGP standard as defined by RFC4880.

GnuPG allows to encrypt and sign your data and

communication, features a versatile key management system

as well as access modules for all kinds of public key

directories. GnuPG, also known as GPG, is a command line

tool with features for easy integration with other applications. A

wealth of frontend applications and libraries are available.

Version 2 of GnuPG also provides support for S/MIME.

2

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0OK. What is GnuPG?

 Implementation of public-key cryptography

 Conforms to an open standard (OpenPGP)

 Allows for:
 Encryption of Data & Communication

 Signing of Data & Communication

 Authentication

3

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0Outline

 Background

 Terminology

 Motivations

 General Theory

 Getting Started
 Key Generation

 Choices

 Key Signing

 Best Practices
 Threat Modeling

 Key Separation

 Integration & UIs
 UIs

 E-mail

 Advanced Topics
 Smart Cards

 Authentication

4

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

Terminology

 PGP – Pretty Good Privacy

 Original implementation, 1991, by Phil Zimmerman

 Source Available until 2000

 OpenPGP – Standard for implementations
 RFC 4880 (Replaced RFC 2440) (Message format)

 RFC 3156 (e-mail format, PGP/MIME)

 GnuPG – GNU-Project, GPL Implementation
 Mostly PGP Compatible

 Implements all of RFC 4880

5

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0Motivations: Encryption

 Protect messages against being read except by

intended recipient(s).

 Intended recipient could be yourself.

 Can exchange secret communications without
needing any pre-shared secrets.

6

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0Motivations: Signing

 Digital signatures prove that you wrote/signed a

given chunk of data. (Non-repudiation)

 Used heavily for code signing, signed
packages, etc.

 Message integrity (unmodified)

7

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0Shortcomings

 Encryption

 Anyone with the
private key can
decrypt message

 Have to know what
key to encrypt to
(anyone can generate
a key with any UID)

 Signing
 Anyone with the
private key can sign a
message

 No proof of WHEN it
was signed

 No way to prove that
you did NOT write a
message

8

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0How it Works (Simplified)

 Public Key Encryption

 Pair of Keys (Public,
Private)

 A message encrypted
to one key can only
be decrypted by the
other key

 Computationally
infeasible to reverse
calculation

 Encryption
 Sender uses public
key to encrypt

 Recipient uses private
key to decrypt

 Signing
 Signer uses private
key to sign (encrypt)

 Recipient uses public
key to verify (decrypt)

9

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0Some Technical Details

 Messages are not

really encrypted with
public key
cryptography

 Encrypted with
symmetric
cryptography

 Key then encrypted
with public-key
cryptography

 Likewise, messages
not signed across the
entire message

 Hash is calculated

 Signed with public-key
cryptography

 Signing + encryption
 Signed first

 Only recipient verifies

10

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0OpenPGP Algorithms

 Public-key

(Asymmetrical)

 RSA(*)

 DSA

 ElGamal

 (Future) ECC

 Symmetrical
 IDEA

 3DES

 CAST5

 AES (*)

 Blowfish

 Twofish

(*) Most often used 11

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0OpenPGP Algorithms

 Compression

 ZIP

 ZLIB (*)

 BZIP2

 Hashing
 MD-5

 SHA-1 (*)

 RIPE-MD/160

 SHA-2 (Family)
 SHA-256

 SHA-384
 SHA-512
 SHA-224

(*) Most often used
12

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0Getting Started: Key Generation

$ gpg --gen-key

Please select what kind of key you want:

 (1) RSA and RSA (default)

 (2) DSA and Elgamal

 (3) DSA (sign only)

 (4) RSA (sign only)

Your selection? 1

RSA keys may be between 1024 and 4096 bits long.

What keysize do you want? (2048)

Requested keysize is 2048 bits

13

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

Algorithm Choice

 RSA

 ”Safe bet” – very commonly used in a variety of
applications

 Based on Integer Factorization Problem

 DSA/ElGamal
 A few cryptographers suggest it is SLIGHTLY stronger

 Less researched

 Based on Discrete Logarithm Problem

 Both are believed to be secure

14

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

Key Length

 Do not generate new 1024-bit keys!

 NIST suggests 2048 is secure until 2030.
 3072 secure until ~2040.

 4096 secure until ~2050.

 Quantum computing could change everything.
 Topic for another day, and probably another group.

 Estimates against enterprise/government level
attackers.

 Keylength.com
15

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0Getting Started: Key Generation

Please specify how long the key should be valid.

 0 = key does not expire

 <n> = key expires in n days

 <n>w = key expires in n weeks

 <n>m = key expires in n months

 <n>y = key expires in n years

Key is valid for? (0) 1d

Key expires at Thu 17 Mar 2011 11:06:24 PM EDT

Is this correct? (y/N) y

16

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0Key Expiration

 Expires

 Key will fall out of use
if you lose private key

 Update key
periodically

 Regenerate key and
get new signatures

 Never expires
 No need to update
date or regenerate

 May never fall out of
use if you lose your
key or compromised

17

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0Getting Started: Key Generation

You need a user ID to identify your key; the software constructs

the user ID

from the Real Name, Comment and Email Address in this form:

Real name: Santiago Figueroa

Email address: santi@example.com

Comment: Demo Key Only

You selected this USER-ID:

 “Santiago Figueroa (Demo Key Only) <santi@example.com>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o

gpg --gen-key

18

mailto:david@example.com
mailto:david@example.com

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0Your Key

gpg: key 36D884AA marked as ultimately trusted

public and secret key created and signed.

gpg: checking the trustdb

gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model

gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 1u

gpg: next trustdb check due at 2011-03-18

pub 2048R/36D884AA 2011-03-17 [expires: 2011-03-18]

Key fingerprint = 5C2E 2066 FB73 5DDC 3E0F

 E0D7 1D4C 7FE2 36D8 84AA

uid Santiago Figueroa (Demo Key Only)

<santi@example.com>

sub 2048R/AB130331 2011-03-17 [expires: 2011-03-18]

19

mailto:santi@example.com

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

Getting Started: Finding Keys

 gpg --recv-keys <keyid>

 gpg --recv-keys 5DEA789B

 gpg --search-keys <UID substring>
 gpg --search-keys santi@example.com

 Keyserver

pool.sks-keyservers.net

 pgp.mit.edu

 gpg --refresh-keys

20

mailto:david@systemoverlord.com
http://pool.sks-keyservers.net/
http://pgp.mit.edu/

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0Getting Started: Sending Keys

 gpg --send-key

 Make sure you really want the key out there
 Don't publish test keys

 Use again after signing keys
 Only if the original key was on the keyserver

 Considered rude to publish someone's key

21

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0Keysigning

 Why sign keys?

 Alice wants to e-mail Carol, but doesn't have
her key

 Alice downloads Carol's key from a keyserver

 But wait! Anyone could generate a key for
carol@example.com

 Never forget who might have access to e-mail

22

mailto:carol@example.com

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0Keysigning

 Alice knows Bob who knows Carol

 Alice has met Bob, verified Bob's key, signed
Bob's key

 Bob has met Carol, verified Carol's key, signed
Carol's key

 If Alice trusts Bob, Alice can believe this key
really belongs to Carol

23

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0Web of Trust

 Connections of signatures between users/keys

 gpg –list-sigs

 OpenPGP model instead of PKI (Certificate
Authorities)

 Some CAs may not be trustworthy, so some
consider Web of Trust superior

 Certainly, individuals I trust more than many CAs

24

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0Keysigning Parties/Events

 Help expand your Web of Trust

 Helps verify not only those at party, but also those
just past that point

 Most effective in cases where you want to
communicate within that ”social circle”

25

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0Signing Philosophies

 ID-Based

 Present ID (often 2)

 Match Names to UIDs

 Sign Key

 E-mail based
 Signer sends
encrypted email to
signee

 Signee responds with
signed email

 Proves control of e-
mail address

26

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0Best Practices: Key Security

 Keep a copy of your key in a secure location

 Use a strong passphrase
 If the file that contains your key is compromised, it
is encrypted with this passphrase

 Keep a pre-generated revocation certificate
offline ”just in case”

 This should be secured too

27

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

Best Practices: Threat Modeling

 U.S. Government

 U.S. v. Boucher

 Probably nothing will
protect you

 Foreign Government
 Might have law
compelling you to
disclose passphrase

 Only if you are there
or commit crime there

 Corporation
 Unlikely to have
resources

 Termination for
improper computer
use

 Malicious Attacker
 Theft of Key

 Keylogger

28

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0Best Practices: Key Separation

 Key Capabilities

 Sign

 Certify

 Encrypt

 Authenticate

 Use --expert option to
gpg

 Separate keys: if
weakness found in
one key, other keys
may be fine

29

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0Best Practices: Key Separation

pub 4096R/5DEA789B created: 2010-12-19 expires: never usage: C

 trust: unknown validity: unknown

sub 3072R/3F0A7DEA created: 2010-12-19 expires: 2012-12-18 usage: S

sub 3072R/63469263 created: 2010-12-19 expires: 2012-12-18 usage: E

sub 2048R/8D1C060E created: 2011-02-23 expires: 2013-02-22 usage: A

[unknown] (1). Santiago Figueroa <santi@eample.com>

30

mailto:david@systemoverlord.com

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

Best Practices: When to Sign E-Mail

 Always
 Some suggest it builds history

 Still doesn't prove an unsigned message didn't
come from you

 Be careful what you sign – only the body is signed

 Important e-mail
 Signifies email as significant

 My personal practice

31

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

Best Practices: Signing Files

 Be careful signing files you didn't create

 Binary files (including doc, docx, odt, etc.) may
have multiple data streams, hidden text, etc.

 Sign ”significant” files
 Off-site backups (really!)

 Code, packages, etc.

 Not currently in use for legal contracts
 May change soon, but need ”legal” keyholder
verification

32

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0Best Practices: E-mail encryption

 Encrypt everything (to recipients with

OpenPGP)

 Some overhead

 Many mobile devices don't support GPG or users
don't use GPG on there

 Encrypt only the important
 Tells an attacker which messages are important

 Allows casual messages to be read everywhere

33

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

Integration: UIs

 GPA

 Standard, Cross-
Platform

 GTK-based

 Seahorse
 In most Gnome
Installations

 Highly Integrated

 GPG/SSH/etc.

 KGPG
 KDE based

 GPG only

 (Non-Linux)
GPGTools

 OS X Suite

 (Non-Linux)
Cryptophane

 Windows

34

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

Integration: GPA

35

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

Integration: Seahorse

36

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

Integration: KGPG

37

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

Integration: E-Mail

 Thunderbird

 Enigmail

 KMail
 Integrated

 Evolution
 Integrated

 Mutt
 Integrated

 Also, transparent
outgoing

 GNU Anubis

 Freenigma

 See Also
 Vim integration

 Emacs integration

38

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

Advanced Topic: Smartcards

 Physical device that generates and stores keys

and performs signing and encryption operations

 OpenPGP Smartcard v2 allows for up to 3 RSA
keys, each up to 3072 bits in size

 Sign/Certify

 Encryption

 Authentication

 Sold by Kernel Concepts out of Germany

39

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

Smartcard-Specifc Terms

 PINs

 Admin PIN

 PIN

 Similar to passphrase; cards limit length; use only
digits if you intend to use a reader that has a PIN
pad

 3 strikes rule

40

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

Card Readers

 Any CCID or PC/SC-compliant smart card

reader should work

 Very common (Amazon, eBay, etc.) with use of
CAC cards for U.S. Military

 Also available from Kernel Concepts

 Requires GPGSM on Debian-derivatives
(S/MIME support for GPG)

 pcscd and pcsc-lite tools (required for PC/SC)
 Provides more details if you run into issues

41

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0

Usage

 gpg –card-status

 Use to get card ”recognized”

 gpg --card-edit
 admin

 passwd

 url

 fetch

 Generate

 gpg --edit-key
 keytocard 42

1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0Authentication

 PAM

 Poldi

 SSH
 gpg-agent is a drop-in replacement for ssh-agent

 enable-ssh-support

 Must disable standard SSH agent, Seahorse, etc.

 gpg --card-status

 ssh-add -l, ssh-add -L (public key)

43

	Slide 1: GnuPG: Open Encryption, Signing and Authentication
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

