

## SYMETRIC ENCRYPTION

1

**INK**)r

#### LECTURE CONTENT

- Feistel Cipher
- Data Encryption Standard (DES)
- Multiple Encryption DES (3DES)
- Advanced Encryption Standard (AES)



#### Learning objectives

- Block ciphers encrypt message in units called blocks
- Classical Cryptography



#### SYMMETRIC CIPHER MODEL



**INK**)r

## 

## IMPORTANT FACTS IN THE MODERN CRYPTOGRAPHY

- In 1948, Claude Shannon released his study about Information Theory (Confusion and Difusion)
- In 1973, Feistel implemented Shannon's theory
- In 1977, the symmetric cryptography standard DES appeared
- In 1976, W. Diffie and M. Hellman released the study concerning the mathematical functions that involve two keys, called public key cipher or asymmetric cryptography
- In 1978, the asymmetric cryptography standard (RSA) is released
- In 2001, the new standard of symmetric cryptography (AES) is released





#### STREAM CIPHER V.S. BLOCK CIPHER

- A stream cipher is one that encrypts a digital data stream one bit or one byte at a time.
- A block cipher is one in which a block of plaintext is treated as a whole and used to produce a ciphertext block of equal length.







## MOTIVATION OF BLOCK CIPHER

- A block cipher operates on a plaintext block of n bits to produce a ciphertext block of n bits.
- □ There are 2<sup>n</sup> possible plaintext blocks.
- For the encryption to be reversible, each must produce a unique ciphertext block, leading to 2<sup>n</sup>! transformations.
- If n is small, the system is vulnerable to a statistical analysis of the plaintext, e.g. the Monoalphabetic cipher.

| Reversib  | le Mapping | Irreversible Mapping |            |  |  |  |
|-----------|------------|----------------------|------------|--|--|--|
| Plaintext | Ciphertext | Plaintext            | Ciphertext |  |  |  |
| 00        | 11         | 00                   | 11         |  |  |  |
| 01        | 10         | 01                   | 10         |  |  |  |
| 10        | 00         | 10                   | 01         |  |  |  |
| 11        | 01         | 11                   | 01         |  |  |  |





Plaintext

Ciphertext

## MOTIVATION OF BLOCK CIPHER

- Can we use long blocks with a reversible/simple/arbitrary substitution cipher?
  - Block size = n = 4 bits  $\succ$ - Key size =  $n \ge 2^n$  bits - Number of possible transformations =  $2^{n!}$ With a large block size is not practical from an implementation and performance point of view - n = 64 bits - No. of transformations =  $2^{64}!$ > Problem: Key size =  $2^{70}$  bits  $\approx 10^{20}$  bytes!!!!



# 

#### FEISTEL CIPHER

- Feistel proposed to approximate the ideal block cipher by utilizing the concept of a product cipher.
- A product cipher is the execution of two or more simple ciphers in sequence, e.g. rotor machine.
- Feistel proposed the use of alternating substitutions and permutations:
  - **Substitution**: Each plaintext element or group of elements is uniquely replaced by a corresponding ciphertext element or group of elements.
  - Permutation: A sequence of plaintext elements is replaced by a permutation of that sequence.
- The purpose is to implement Claude Shannon's proposal to thwart cryptanalysis with *diffusion* and *confusion*.
  - Confusion makes relationship between ciphertext and key as complex as possible
  - Diffusion dissipates statistical structure of plaintext over bulk of ciphertext





#### FEISTEL CIPHER STRUCTURE

#### Block size:

- Larger block size  $\rightarrow$  greater security
- Larger block size  $\rightarrow$  reduced encryption/decryption speed
- $\Box$  Typical sizes  $\rightarrow 64/128$  bits
- □ Key:

MINISTERIO

DE EDUCACIÓN

ORMACIÓN PROFESIONAL

Key is regenerated in each round 

#### Number of rounds:

- Single round is not enough
- Multiple rounds offer increasing security
- Typical value is 16 rounds
- Subkey generation algorithm
  - Increasing complexity
- Round function F
  - Further increasing complexity



#### FEISTEL CIPHER STRUCTURE

□ Formula of encryption:

 $LE_{i} = RE_{i-1}$  $RE_{i} = LE_{i-1} \oplus F(RE_{i-1}, K_{i})$ 

*i* - round index, [1,16] *LE<sub>i</sub>* - left half block of round *i RE<sub>i</sub>* - right half block of round *i F(RE<sub>i-1</sub>,K<sub>i</sub>)* - round function





**NK**)r

11

**Output (ciphertext)** 

#### FEISTEL CIPHER STRUCTURE

□ Formula of encryption :

 $LE_{i} = RE_{i-1}$  $RE_{i} = LE_{i-1} \bigoplus F(RE_{i-1}, K_{i})$ 

□ Formula of decryption :

$$LD_{i} = RD_{i-1}$$
$$RD_{i} = LD_{i-1} \bigoplus F(RD_{i-1}, K_{17-i})$$

 Encryption and decryption can share the same implementation!

MINISTERIO

RMACIÓN PROFESIONAL



**ink**)r

#### AVALANCHE EFFECT

- A property of the Feistel Cipher Structure is Avalanche Effect
- A change of one input bit or key bit should result in changing approximately half of output bits!
- Making attempts to guess the key by using different Plaintext Ciphertext pairs should be impossible



13



## DATA ENCRYPTION STANDARD (DES)

- DES is based on the Feistel Cipher Structure
- One of the most widely used block cipher in world
- Adopted in 1977 by NIST
- Encrypts 64-bit data using 56-bit key
- DES has become widely used, especially in financial applications





#### **DES ENCRYPTION**

#### Break message into 8-byte (64-bit) blocks

- Each block broken into 32-bit halves
- Initial permutation
- 16 rounds of scrambling
- Final (reverse) permutation



64-bit key

64-bit plaintext

Encryption algorithm structure:

- Initial and final permutation
- Round
  - □ Scrambling *F* function
- Key schedule



#### **INITIAL AND FINAL PERMUTATION**

- First and final steps of the data computation
- IP reorders the input data bits and IP<sup>-1</sup> is the inverse

|                 |    |    |    | )  |    |    |   |
|-----------------|----|----|----|----|----|----|---|
| 58              | 50 | 42 | 34 | 26 | 18 | 10 | 2 |
| <mark>60</mark> | 52 | 44 | 36 | 28 | 20 | 12 | 4 |
| 62              | 54 | 46 | 38 | 30 | 22 | 14 | 6 |
| 64              | 56 | 48 | 40 | 32 | 24 | 16 | 8 |
| 57              | 49 | 41 | 33 | 25 | 17 | 9  | 1 |
| 59              | 51 | 43 | 35 | 27 | 19 | 11 | 3 |
| 61              | 53 | 45 | 37 | 29 | 21 | 13 | 5 |
| 63              | 55 | 47 | 39 | 31 | 23 | 15 | 7 |

IP<sup>-1</sup>

| 40 | 8 | 48 | 16 | 56 | 24 | 64 | 32 |
|----|---|----|----|----|----|----|----|
| 39 | 7 | 47 | 15 | 55 | 23 | 63 | 31 |
| 38 | 6 | 46 | 14 | 54 | 22 | 62 | 30 |
| 37 | 5 | 45 | 13 | 53 | 21 | 61 | 29 |
| 36 | 4 | 44 | 12 | 52 | 20 | 60 | 28 |
| 35 | 3 | 43 | 11 | 51 | 19 | 59 | 27 |
| 34 | 2 | 42 | 10 | 50 | 18 | 58 | 26 |
| 33 | 1 | 41 | 9  | 49 | 17 | 57 | 25 |

#### **Example:**

RMACIÓN PROFESIONA

IP(675a6967 5e5a6b5a) = (ffb2194d 004df6fb)

| 1    | 5    | 9    | 13   | 17   | 21   | 25   | 29   | 33   | 37   | 41   | 45   | 49   | 53   | 57   | 61   |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 0110 | 0111 | 0101 | 1010 | 0110 | 1001 | 0110 | 0111 | 0101 | 1110 | 0101 | 1010 | 0110 | 1011 | 0101 | 1010 |
| 1111 | 1111 | 1011 | 0010 | 0001 | 1001 | 0100 | 1101 | 0000 | 0000 | 0100 | 1101 | 1111 | 0110 | 1111 | 1011 |



#### SINGLE ROUND OF DES ALGORITHM







#### SINGLE ROUND OF DES ALGORITHM





#### DES KEY SCHEDULE







**INK**)r

## **DES DECRYPTION**

- Same algorithm is used for decryption.
- The application of subkeys is reversed
- The initial and final permutations are reversed.





20

ink)r



#### AVALANCHE EFFECT OF DES

#### 1-bit change in plaintext

| Round |                                      | δ  | Round            |                                      | δ  |
|-------|--------------------------------------|----|------------------|--------------------------------------|----|
|       | 02468aceeca86420<br>12468aceeca86420 | 1  | 9                | c11bfc09887fbc6c<br>99f911532eed7d94 | 32 |
| 1     | 3cf03c0fbad22845<br>3cf03c0fbad32845 | 1  | 10               | 887fbc6c600f7e8b<br>2eed7d94d0f23094 | 34 |
| 2     | bad2284599e9b723<br>bad3284539a9b7a3 | 5  | 11               | 600f7e8bf596506e<br>d0f23094455da9c4 | 37 |
| 3     | 99e9b7230bae3b9e<br>39a9b7a3171cb8b3 | 18 | 12               | f596506e738538b8<br>455da9c47f6e3cf3 | 31 |
| 4     | 0bae3b9e42415649<br>171cb8b3ccaca55e | 34 | 13               | 738538b8c6a62c4e<br>7f6e3cf34bc1a8d9 | 29 |
| 5     | 4241564918b3fa41<br>ccaca55ed16c3653 | 37 | 14               | c6a62c4e56b0bd75<br>4bc1a8d91e07d409 | 33 |
| 6     | 18b3fa419616fe23<br>d16c3653cf402c68 | 33 | 15               | 56b0bd7575e8fd8f<br>1e07d4091ce2e6dc | 31 |
| 7     | 9616fe2367117cf2<br>cf402c682b2cefbc | 32 | 16               | 75e8fd8f25896490<br>1ce2e6dc365e5f59 | 32 |
| 8     | 67117cf2c11bfc09<br>2b2cefbc99f91153 | 33 | IP <sup>-1</sup> | da02ce3a89ecac3b<br>057cde97d7683f2a | 32 |

#### 1-bit change in key

| Round |                                      | δ  |   | Round            |                                      | δ  |
|-------|--------------------------------------|----|---|------------------|--------------------------------------|----|
|       | 02468aceeca86420<br>02468aceeca86420 | 0  |   | 9                | c11bfc09887fbc6c<br>548f1de471f64dfd | 34 |
| 1     | 3cf03c0fbad22845<br>3cf03c0f9ad628c5 | 3  |   | 10               | 887fbc6c600f7e8b<br>71f64dfd4279876c | 36 |
| 2     | bad2284599e9b723<br>9ad628c59939136b | 11 |   | 11               | 600f7e8bf596506e<br>4279876c399fdc0d | 32 |
| 3     | 99e9b7230bae3b9e<br>9939136b768067b7 | 25 |   | 12               | f596506e738538b8<br>399fdc0d6d208dbb | 28 |
| 4     | 0bae3b9e42415649<br>768067b75a8807c5 | 29 |   | 13               | 738538b8c6a62c4e<br>6d208dbbb9bdeeaa | 33 |
| 5     | 4241564918b3fa41<br>5a8807c5488dbe94 | 26 | 1 | 14               | c6a62c4e56b0bd75<br>b9bdeeaad2c3a56f | 30 |
| 6     | 18b3fa419616fe23<br>488dbe94aba7fe53 | 26 |   | 15               | 56b0bd7575e8fd8f<br>d2c3a56f2765c1fb | 27 |
| 7     | 9616fe2367117cf2<br>aba7fe53177d21e4 | 27 | 1 | 16               | 75e8fd8f25896490<br>2765c1fb01263dc4 | 30 |
| 8     | 67117cf2c11bfc09<br>177d21e4548f1de4 | 32 | ] | IP <sup>-1</sup> | da02ce3a89ecac3b<br>ee92b50606b62b0b | 30 |

#### Key:12468aceeca86420

#### Key1: 0f1571c947d9e859 Key2: 1f1571c947d9e859



#### STRENGTH OF DES

- Time to break DES
  - Number of keys:  $2^{56} = 7.2 \times 10^{16}$  keys
    - On the average you need to search through 2<sup>55</sup> keys (half of all possible keys must be tried to achieve success.)
    - In the worst case you need to search all  $2^{56}$  keys
  - If you can do one encryption/decryption in 1 clock cycle @ 500 MHz
    - Time taken to check ONE key =  $1/(500 \times 10^6)$  s
    - Time taken to check 2<sup>55</sup> keys = 2<sup>55</sup>/(500 x 10<sup>6</sup>) s = 72,057,594.04 s /3600 = 20016 hours /24 = 834 days
- The hertz (symbol: Hz) is defined as the number of cycles per second (MHz = 10<sup>6</sup> Hz)
- Nowadays technology
  - A single PC can break DES in about a year
  - If 100 PCs work in parallel, it only takes 3-4 days.



#### **REPLACEMENT OF DES**

- It is necessary to design a replacement for DES, leading to two solutions:
  - Triple-DES (3DES)
  - Advanced Encryption Standard (AES)





#### WHY TRIPLE-DES?

- Why not Double-DES?
  - Key length = 112 bits

 $C=E_{K2}[E_{K1}[P]]$ 



Decryption



- Since  $X = E_{K1} [P] = D_{K2} [C]$
- Attack by encrypting P with all keys and store
- Then decrypt C with keys and match X value
- It takes O (2<sup>56</sup>) steps





#### TRIPLE-DES WITH TWO-KEYS

- Use 2 keys with E-D-E sequence
  - Key length = 112 bits

 $C = E_{K1} [D_{K2} [E_{K1} [P]]]$ 



- If K1=K2 then can work with single DES, no new hardware is required for single DES.
- No current known practical attacks for 2-key 3DES





#### TRIPLE-DES WITH THREE-KEYS

- Although there are no practical attacks on two-key Triple-DES, there are some theoretical ones
- Triple-DES with Three-Keys can be used to avoid even these



- Backward compatibility with DES ( $K_3 = K_2 = K_1$ )
- Has been adopted by some Internet applications





## ADVANCED ENCRYPTION STANDARD (AES)

- It was clearly needed a replacement for DES
  - Theoretical attacks that can break it
  - Have demonstrated exhaustive key search attacks
- It can be used Triple-DES but slow with small blocks
- US NIST: call for candidates for Advanced Encryption Standard (AES) in 1997
- 15 candidates accepted in Jun 98, and 5 were shortlisted in Aug-99
  - MARS (IBM) complex, fast, high security margin
  - RC6 (USA) v. simple, v. fast, low security margin
  - Rijndael (Belgium) clean, fast, good security margin
  - Serpent (Euro) slow, clean, v. high security margin
  - Twofish (USA) complex, v. fast, high security margin
- Rijndael was selected as the AES in Oct-2000
- Issued as FIPS PUB 197 standard in Nov-2001



#### FEATURES OF AES

- Designed by Rijmen-Daemen in Belgium
- Block size: 128 bits
- Key sizes: 128/192/256 bits
- Variable rounds: 10/12/14 rounds
- Resistant against known attacks
- Speed and code compactness on many CPUs



#### STRUCTURE OF AES





**INK**)r

#### DATA STRUCTURE OF AES

- Processes data as 4 groups of 4 bytes (128 bits) or 4x4 matrix state
- Key expansion: takes 128-bit (16-byte) key and expands into an array of 44 32-bit words





(b) Key and expanded key

## 

**ink**)r

## **AES ENCRYPTION AND DECRYPTION**

- In AES, each round is not Feistel network
- Each round has four operations:
  - Substitute
  - Shift rows
  - Mix columns
  - Add round key





#### AES ROUND (BYTE SUBSTITUTION)

• Byte substitution (1 S-box of 16x16 used on every byte)



- Inverse Byte substitution: Inverse S-box
  - IS-box(S-box(a)) = a



Inverse S-box

#### AES ROUND (SHIFT ROWS)

- Shift rows (permute bytes in each row)
  - Circular left shift



• Inverse shift rows: circular right shift



**INK**)r

## AES ROUND (MIX COLUMNS)

- Mix columns (subs using matrices multiplication)
  - *M*·S = S'

• Example:  $S'_{0.0} = 2 \oplus S_{0.0} + 3 \oplus S_{1.0} + S_{2.0} + S_{3.0}$ 3 1 2 3  $\times$ |=2 3 3 2 *∎ s*′<sub>0,2</sub> ⊧ *∎ \$*0,2 <sup>µ</sup> s'<sub>0.0</sub> s<sub>0.1</sub> S'0.3 *s*<sub>0,1</sub> *s*<sub>0.0</sub> S<sub>0.3</sub>  $s'_{1,0}$  $s'_{1,2} | s'_{1,3}$ *s*<sub>1,1</sub>  $s_{1,0} | s_{1,1}$ s<sub>1,2</sub> s<sub>1,3</sub> S' S  $s'_{2,1}$ s'<sub>2,2</sub> s'<sub>2,3</sub>  $s_{2,0}'$ S<sub>2,0</sub> s<sub>2.1</sub> S<sub>2,2</sub> S2.3 s'3,1 s'3,2 s'3,3 s'3,0 S<sub>3.0</sub> S<sub>3.1</sub> S<sub>3,2</sub> S<sub>3,3</sub>

• Inverse mix columns:  $\exists M^{-1} | M^{-1} \cdot M = I$ 



**ink**yr

#### AES ROUND (ADD ROUND KEY)







=



INKOT Inkorformation



#### **AES KEY GENERATION**



GOBIERNO

MINISTERIO

DE EDUCACIÓN Y FORMACIÓN PROFESIONAL



Ink)r

#### AVALANCHE EFFECT IN AES

| Round |                                                                      | Number of Bits<br>that Differ |
|-------|----------------------------------------------------------------------|-------------------------------|
|       | 0123456789abcdeffedcba9876543210<br>0023456789abcdeffedcba9876543210 | 1                             |
| 0     | 0e3634aece7225b6f26b174ed92b5588<br>0f3634aece7225b6f26b174ed92b5588 | 1                             |
| 1     | 657470750fc7ff3fc0e8e8ca4dd02a9c<br>c4a9ad090fc7ff3fc0e8e8ca4dd02a9c | 20                            |
| 2     | 5c7bb49a6b72349b05a2317ff46d1294<br>fe2ae569f7ee8bb8c1f5a2bb37ef53d5 | 58                            |
| 3     | 7115262448dc747e5cdac7227da9bd9c<br>ec093dfb7c45343d689017507d485e62 | 59                            |
| 4     | f867aee8b437a5210c24c1974cffeabc<br>43efdb697244df808e8d9364ee0ae6f5 | 61                            |
| 5     | 721eb200ba06206dcbd4bce704fa654e<br>7b28a5d5ed643287e006c099bb375302 | 68                            |
| 6     | 0ad9d85689f9f77bc1c5f71185e5fb14<br>3bc2d8b6798d8ac4fe36a1d891ac181a | 64                            |
| 7     | db18a8ffa16d30d5f88b08d777ba4eaa<br>9fb8b5452023c70280e5c4bb9e555a4b | 67                            |
| 8     | f91b4fbfe934c9bf8f2f85812b084989<br>20264e1126b219aef7feb3f9b2d6de40 | 65                            |
| 9     | cca104a13e678500ff59025f3bafaa34<br>b56a0341b2290ba7dfdfbddcd8578205 | 61                            |
| 10    | ff0b844a0853bf7c6934ab4364148fb9<br>612b89398d0600cde116227ce72433f0 | 58                            |

1-bit change in plaintext

| Round |                                                                      | Number of Bits<br>that Differ |
|-------|----------------------------------------------------------------------|-------------------------------|
|       | 0123456789abcdeffedcba9876543210<br>0123456789abcdeffedcba9876543210 | 0                             |
| 0     | 0e3634aece7225b6f26b174ed92b5588<br>0f3634aece7225b6f26b174ed92b5588 | 1                             |
| 1     | 657470750fc7ff3fc0e8e8ca4dd02a9c<br>c5a9ad090ec7ff3fc1e8e8ca4cd02a9c | 22                            |
| 2     | 5c7bb49a6b72349b05a2317ff46d1294<br>90905fa9563356d15f3760f3b8259985 | 58                            |
| 3     | 7115262448dc747e5cdac7227da9bd9c<br>18aeb7aa794b3b66629448d575c7cebf | 67                            |
| 4     | f867aee8b437a5210c24c1974cffeabc<br>f81015f993c978a876ae017cb49e7eec | 63                            |
| 5     | 721eb200ba06206dcbd4bce704fa654e<br>5955c91b4e769f3cb4a94768e98d5267 | 81                            |
| 6     | 0ad9d85689f9f77bc1c5f71185e5fb14<br>dc60a24d137662181e45b8d3726b2920 | 70                            |
| 7     | db18a8ffa16d30d5f88b08d777ba4eaa<br>fe8343b8f88bef66cab7e977d005a03c | 74                            |
| 8     | f91b4fbfe934c9bf8f2f85812b084989<br>da7dad581d1725c5b72fa0f9d9d1366a | 67                            |
| 9     | cca104a13e678500ff59025f3bafaa34<br>0ccb4c66bbfd912f4b511d72996345e0 | 59                            |
| 10    | ff0b844a0853bf7c6934ab4364148fb9<br>fc8923ee501a7d207ab670686839996b | 53                            |

1-bit change in key





**INK**)r



#### **AES IMPROVEMENT FOR IMPLEMENTATION**





#### **BLOCK CIPHER OPERATION**

- We have discussed encryption for a single block, but the plaintext normally consists of multiblock
- There are five block cipher modes of operation:
  - Electronic Codebook (ECB)
  - Cipher Block Chaining (CBC)
  - Cipher Feedback (CFB)
  - Output Feedback (OFB)
  - Counter (CTR)



39

## ELECTRONIC CODEBOOK (ECB)

- Message is broken into independent blocks which are encrypted
- Each block is a value which is substituted, like a codebook, hence name
- Each block is encoded independently of the other blocks

 $C_{i} = E_{K} (P_{i})$ 

• ECB is used for secure transmission of single block



#### LIMITATIONS OF ECB

- Limitations
  - If the same block of plaintext appears more than once in the message, it always produces the same ciphertext.
  - Weakness due to encrypted message blocks being independent





# 

#### CIPHER BLOCK CHAINING (CBC)

- Message is broken into blocks
- But these are linked together in the encryption operation
- Each previous cipher blocks is chained with current plaintext block
- Use Initial Vector (IV) to start process

$$C_{i} = E_{K} (P_{i} \quad C_{i-1}) \bigoplus$$
$$C_{-1} = IV$$

• CBC is used for bulk data encryption, authentication



#### CIPHER FEEDBACK (CFB)

MINISTERIO

- Message is treated as a stream of bits
- Result is feedback for next stage
- Standard allows any number of bit (1,8 or 64 or whatever) to be fed back, namely CFB-1, CFB-8, CFB-64, etc
- A common value is s=8 (CFB-8)  $C_i = P_i \bigoplus S_s (E_K (C_{i-1}))$ ,  $S_s (x)$  are the "s" bits of  $C_{-1} = IV$



#### OUTPUT FEEDBACK (OFB)

- Message is treated as a stream of bits
- Output of cipher is added to message
- Output is then fed back
- Feedback is independent of message
- Can be computed in advance  $C_i = P_i \bigoplus O_i$ ,  $O_i = E_K(O_{i-1})$ ,  $O_{-1} = IV$



## COUNTER (CTR)

RMACIÓN PROFESIONA

- A "new" mode, though proposed early on
- Similar to output feedback but encrypts counter value rather than any feedback value
- Must have a different key & counter value for every plaintext block (never reused)

$$C_i = P_i \oplus O_i$$
,  $O_i = E_K$  (Counter+i-1)





#### LABORATORY

• Laboratory\_01: Python Encryption AES

