

1

INTRODUCTION TO SECURITY

HOW AM I

Santiago Figueroa Lorenzo:

• Senior Industrial Cybersecurity Engineer at Siemens Gamesa

- PhD at University of Navarra
- Lecturer at University of Navarra (UNAV)
- Lecturer at Inkorformación
- Web page: sfl0r3nz05.github.io
- LinkedIn: sfl0r3nz05

LECTURE CONTENT

- Students' presentation (Turn on the camera during it)
- Lecture overview
- Lecture resources
- Quick introduction
- Network security definition
- Important definitions
- Why cryptography
- Goals of the cryptography

LECTURE OVERVIEW

- Lecture:
 - Theory
 - Practice
- Test exam

MINISTERIO

DE EDUCACIÓN

ORMACIÓN PROFESIONAL

- Ordinary evaluation
- Extraordinary evaluation

LECTURE RESOURCES

- Linux VM:
 - Python
 - OpenSSL
 - OpenSSH
 - Git
 - OpenPGP
 - Docker containers
- GitHub account
- Packet Tracer Software

5

Ink)r

Preconceived ideas about the Internet

• "Network created by and for gentlemen".

- "Functionality" is the priority.
- A hacker is a criminal.

INKOrformacion

Where attacks came from?

https://www.visualcapitalist.com/hackers-hack-motives-behind-cyberattacks/

9

INK)

How to attack?: Attack patterns

- Vulnerability exploitations. ٠
- Weakness exploitation.
- MiTM. ٠
- Malware
- Impersonate identities.
- DoS. •

. . .

Lateral Movements.

Reconnaissance	Resource	Initial Access	Execution	Persistence	Privilege	Defense Evasion	Credential	Discovery	Lateral
10 techniques	8 techniques	10 techniques	14 techniques	20 techniques	14 techniques	44 techniques	17 techniques	32 techniques	9 techniques
Active Scanning ₍₃₎	Acquire Access	Content	Cloud	Account Manipulation and	Abuse	Abuse Elevation	Adversary-in-	Account Discovery (4)	Exploitation of
Sather Victim Host	Acquire	Drive-by	Command	BITS Jobs	Control Mechanism (6)	Access Token	Brute Force (4)	Application Window Discovery	Services
Sather Victim Identity nformation (3)	Compromise Accounts (3)	Compromise Exploit Public-	Command and Scripting Interpreter (11)	Boot or Logon Autostart	Access Token Manipulation (5)	Manipulation ₍₅₎ BITS Jobs	Credentials from	Browser Information Discovery	Internal Spearphishing
Sather Victim		Facing Application	Container	Boot or Logon	Account Manipulation on	Build Image on Host	Stores (6)	Cloud Infrastructure	Lateral Tool Transfer
nformation (6)	Develop	External Remote	Command	Initialization	Boot or Logon	Debugger Evasion	Exploitation for Credential	Cloud Service	Remote
Sather Victim Org	Capabilities (4)	Services	Deploy Container	Browser	Autostart II Execution (14)	Deobfuscate/Decode Files or Information	Access	Dashboard	Session Hijacking (2)
Phishing for	Establish Accounts (3)	Hardware Additions	vare Exploitation for Client Execution	Extensions	Boot or Logon	Deploy Container	Forced Authentication	Cloud Service Discovery	Remote
Search Closed	Obtain Capabilities (7) II Phishing (4) II Inter-Process Communica	Inter-Process	Host Software Binary	Scripts (5)	Direct Volume Access	Forge Web	Cloud Storage Object	Services (8) Replication	
Sources (2)	Stage	Replication Through	Native API	Create	Create or Modify System	Domain or Tenant Policy Modification (2)	Input	Container and	Through Removable
Search Open Fechnical II	Capabilities (6)	Removable Media	Scheduled	Account (3)	Process (5)	Execution	Capture (4)	Resource Discovery	Media
Databases (5)		Supply Chain	Task/Job (5)	Create or Modify System	Domain or Tenant Policy	Guardrails (2)	Modify Authentication II	Debugger Evasion	Software Deployment
Vebsites/Domains (3)		Compromise (3)	Execution	Process (5)	Modification (2)	Defense Evasion	Process (9)	Device Driver Discovery	Toint Shored
Search Victim-Owned		Relationship	Shared Modules	Execution (17)	Escape to Host	File and Directory Permissions	Authentication	Domain Trust Discovery	Content
		Valid Accounts (4)	Software Deployment Tools	External Remote	Execution (17)	Modification (2)	Multi-Factor	File and Directory	Use Alternate Authentication II
			System	Services	Exploitation for Privilege	Hide Artifacts (12)	Authentication Request	Discovery	Material (4)
			Services (2)	Execution	Escalation	Flow (13)	Generation	Discovery	
			Windows	Implant Internal	Execution II	Impair Defenses (11)	Sniffing	Log Enumeration	
			Management	Image	Droccocc	Impersonation	OS Credential	Network Service	

layout: side -

ATT&CK Matrix for Enterprise

show sub-techniques hide sub-techniques

Inkorformacion or -

What is computer/network security?

• Definition from NIST:

"The protection afforded to an automated information system in order to attain the applicable objectives of preserving the integrity, availability, and confidentiality of information system resources (includes hardware, software, firmware, information/data, and telecommunications)."

> Objectives of computer security

REQUIREMENTS

- Confidentiality
 - Information is not available to or disclosed to unauthorized individuals, entities or processes.
- Data integrity
 - Information is not available to or disclosed to unauthorized individuals, entities or processes.
- Availability
 - Information is not available to or disclosed to unauthorized individuals, entities or processes.
- Authentication
 - Authentication ensures that users are identified, and those identities are appropriately verified.
- Authorization
 - Authorization ensures that users' actions are authorized in the system. User privileges allow the intended action.
- Accountability
 - The activities can be proven afterwards that the participants have no means of denying their participation.
- Non-Repudiation
 - The principle that it can be proven afterwards that the participants in a transaction really did authorize the transaction and that they have no means of denying their participation.

ENVIRONMENTAL DEPENDENT

CRYPTOGRAPHY

ls:

- A tremendous tool for protecting information
- The basis for many security mechanisms

ls not:

- The solution to all security problems
- Reliable unless implemented and used properly
- Something you should try to invent yourself

GOAL 1: SECURE COMMUNICATION (protecting data in transit)

TRANSPORT LAYER SECURITY / TLS

Standard for Internet security

• Goal: "... provide privacy and reliability between two communicating applications"

Two main parts

1. Handshake Protocol: Establish shared secret key using public-key cryptography

2. Record Layer: Transmit data using negotiated key

Our starting point: Using a key for encryption and integrity

Network

Data Link

Physical

ENCRYPTION USED TO SCRAMBLE DATA

Shhhhhh!

Secreto = Cantidad de Información × (Número de Personas interesadas en conocer el secreto × Tiempo que pasa sin que lo conozcan) / (Personas que conocen el secreto × Tiempo que lo conocen)

- Cómo medir secretos

INK)r

BASIC TERMINOLOGY

- **Plaintext** the original message
- Ciphertext the coded message
- **Cipher** algorithm for transforming plaintext to ciphertext
- Key info used in cipher known only to sender/receiver
- Encipher (encrypt) converting plaintext to ciphertext
- **Decipher (decrypt)** recovering ciphertext from plaintext
- **Cryptography** study of encryption principles/methods
- Cryptanalysis (codebreaking) the study of principles/methods of deciphering ciphertext without knowing key
- Cryptology the field of both cryptography and cryptanalysis

MORE DEFINITIONS

Computational security

• Given limited computing resources (e.g., time needed for calculations is greater than age of universe), the cipher cannot be broken.

Poderío criptográfico

Todo es posible. Lo imposible simplemente nos lleva más tiempo.

> – lema de la <u>NSA</u> en <u>La fortaleza Digital,</u> de Dan Brown

CRYPTOANALYSIS: BRUTE FORCE SEARCH

- Always possible to simply try every key
- Most basic attack, proportional to key size
- Assume either known / recognized plaintext

Key Size (bits)	Number of Alternative Keys	Time required at 1 encryption/ μ s	Time required at 10 ⁶ encryptions/µs
32	$2^{32} = 4.3 \times 10^9$	$2^{31} \mu s = 35.8 \text{ minutes}$	2.15 milliseconds
56	$2^{56} = 7.2 \times 10^{16}$	$2^{55} \mu s = 1142$ years	10.01 hours
128	$2^{128} = 3.4 \times 10^{38}$	$2^{127} \mu s = 5.4 \times 10^{24} \text{ years}$	5.4×10^{18} years
168	$2^{168} = 3.7 \times 10^{50}$	$2^{167} \mu s = 5.9 \times 10^{36} y ears$	5.9×10^{30} years
26 characters (permutation)	$26!=4\times 10^{26}$	$2\times 10^{26}\mu \mathrm{s}=6.4\times 10^{12}$ years	6.4×10^6 years

CRYPTOSYSTEM CLASSIFICATION

- Can be characterized by:
 - Historical and cultural (not technical)
 - Classical / modern
 - Type of encryption operations used
 - Substitution / transposition / product
 - Number of keys used
 - Single-key or secret / two-key or public / even no key
 - Way in which plaintext is processed
 - Block / stream

Boundary between classical and modern cryptography

- We will consider the important milestones of modern cryptography.
- We must answer: when did we move from mechanical to digital encryption? when did we move from military encryption to civil encryption?

Hortz Feistel: 1974

Whitfield Diffie y Martin Hellman: 1976

ink)r

Historical classification of cryptosystems

- This is not the best classification from the point of view of engineering and computer science.
- But it will allow us to see the development of these encryption techniques, nowadays rudimentary and simple, from a historical perspective and it is also culturally interesting for an engineer.
- Classical cryptography will allow us to cryptanalyze with some facility practically all these cipher systems.

Chronological details of the classic cypher

- In the Ancient Age (From 4,000 B.C. to the 4th century)
 - The Spartans cipher messages using the scytale.
 - The Greek historian Polybius describes the Polybius cipher.
 - Julius Caesar uses a method for encrypting his messages.
- In the Middle Ages (from the 5th to the 15th century)
 - Leon Battista Alberti publishes "Modus scribendi in ziferas" in which he speaks for the for the first time of Alberti's disk, the first polyalphabetic system.
 - The French diplomat Blaise de Vigenère publishes "Tractié de Chiffre" in which he presents the first polyalphabetic system with an autoclave, known as "Le chiffre indéchiffrable", although it was later renamed "Le Vigenère's cipher (from the 16th century).

Chronological details of the classic cypher

- In the contemporary age (from the end of the 18th century to today)
 - Friedrich Kasiski develops statistical methods of cryptanalysis that were able to break Vigenère's cipher.
 - La Cryptographie militaire" by Auguste Kerckhoff von Nieuwendhoff contains the "Kerckhoff principle" which requires basing the security of an encryption method solely on the encryption method solely on the secrecy of the key and not on the algorithm.
 - Lester S. Hill published the paper "Cryptography in an Algebraic Alphabet" and Hill's cipher applying algebra, modular multiplication of matrices.
 - Mechanical and electromechanical cipher machines, such as the Enigma machine that Alan Turing creates using the idea of the Turing bomb, which he conceived based on previous work of Marian Rejewski.

CLASSICAL CRYPTOSYSTEMS CLASSIFICATION

TWO BASIC TYPES OF OPERATIONS

- Substitution (TVCTUJUVUJPO)
 - Message broken up into units
 - Units mapped into ciphertext
 - Ex: Caesar cipher
 - First-order statistics are kept in simplest cases
 - Predominant form of encryption
- Transposition (TASOIINRNPSTO)
 - Message broken up into units
 - Units permuted in a seemingly random but reversible manner
 - Difficult to make it easily reversible, only by intended receiver
 - Exhibits same first-order statistics

TWO BASIC BLOCKS OF ENCRYPTION TECHNIQUES

Substitution

• The letters of plaintext are replaced by other letters or by numbers or symbols, e.g.

HOME \rightarrow IPNF

Transposition

• The characters (bits) are rearranged without modification, which is also called permutation, e.g.

HOME \rightarrow EMOH

CRYPTOSYSTEM CLASSIFICATION

INK)r

"TWO" BASIC CIPHER TYPES

- Symmetric-key (secret key, conventional)
 - Single key used for both encryption and decryption
 - Keys are typically short, because key space is densely filled
 - Ex: DES, 3DES, AES, IDEA, Blowfish, RC5, RC4, etc.
- Public-key (asymmetric)
 - Two keys: one for encryption, one for decryption
 - Keys are typically long, because key space is sparsely filled
 - Ex: RSA, Diffie-Hellman, ElGamal, ECC, DSA, etc
- Hash Functions (no confidentiality but integrity and DS)
 - No key
 - Create a fixed-length fingerprint
 - Ex: MD4, MD5, SHA-1, etc.

WHAT CAN WE USE?

- Symmetric vs asymmetric cipher?
- Symmetric ciphers
 - Faster but without digital signatures
- Asymmetric ciphers
 - Slower but with digital signatures

Information enciphering: Secret key cipher Digital signature and key distribution: Public key cipher

SYMMETRIC CIPHER MODEL

MINISTERIO

DE EDUCACIÓN

INK)r

REQUIREMENTS

□ Two requirements for secure use of symmetric encryption:

- A strong encryption algorithm

- A secret key known only to sender / receiver • $Y = E_k(X)$

• $X = D_k(Y)$

- Assume encryption algorithm is known

- It needs a secure channel to distribute key

CAESAR CIPHER

- Earliest known substitution cipher, designed by Julius Caesar
- Key idea: replaces each letter by the 3rd next letter
- Example:

meet me after the toga party

PHHW PH DIWHU WKH WRJD SDUWB

• Formal description:

 $C = E(k, p) = (p+k) \mod 26$ p = D(k, C) = (C-k) \mod 26

- C-Cipher text
- p-plaintext
- k-key

Numerical equivalent to each letter:

CAESAR CIPHER WEAKNESS

Each letter is enciphered in the same way. It's a great weakness and the system can be easily attacked by means of letter frequencies.

EXAMPLE OF CAESAR CIPHER (MOD 26)

Plaintext: meet me after the toga party

Ciphertext (k=3):
PHHW PH DIWHU WKH WRJD SDUWB

Formal description:

$$C = E(k, p) = (p+3) \mod 26$$

 $p = D(k, C) = (C-3) \mod 26$

Numerical equivalent to each letter:

а	b	с	d	e	f	g	h	i	j	k	1	m
0	1	2	3	4	5	6	7	8	9	10	11	12

n	0	р	q	r	s	t	u	v	W	X	у	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

CRYPTANALYSIS OF CAESAR CIPHER

- Could simply try each key in turn (**brute force**)
 - Encryption/decryption algorithms are known
 - There are few keys to try (26): A maps to A, B,...Z
 - The language of the plaintext is known
- Given ciphertext, just try all shifts of letters

ΈY						
1	oggv	og	chvgt	vjg	vqic	rctva
2	nffu r	nf k	ogufs u	if ι	uphb d	qbsuz
3	meet	me	after	the	toga	party
4	ldds	ld	zesdq	sgd	snfz	ozqsx
5	kccr	kc	ydrcp	rfc	rmey	nyprw
6	jbbq	jb	xcqbo	qeb	qldx	mxoqv
7	iaap	ia	wbpan	pda	pkcw	lwnpu
8	hzzo	hz	vaozm	ocz	ojbv	kvmot
9	gyyn	дÀ	uznyl	nby	niau	julns
10	fxxm	fx	tymxk	max	mhzt	itkmr
11	ewwl	ew	sxlwj	lzw	lgys	hsjlq
12	dvvk	dv	rwkvi	kyv	kfxr	grikp
13	cuuj	cu	qvjuh	jxu	jewq	fqhjo
14	btti	bt	puitg	iwt	idvp	epgin
15	assh	as	othsf	hvs	hcuo	dofhm
16	zrrg	zr	nsgre	gur	gbtn	cnegl
17	yqqf	Уd	mrfqd	ftq	fasm	bmdfk
18	xppe	xp	lqepc	esp	ezrl	alcej
19	wood	WO	kpdob	dro	dyqk	zkbdi
20	vnnc	vn	jocna	cqn	схрј	yjach
21	ummb	um	inbmz	bpm	bwoi	xizbg
22	tlla	tl	hmaly	aol	avnh	whyaf
23	skkz	sk	glzkx	znk	zumg	vgxze
24	rjjy	rj	fkyjw	ymj	ytlf	ufwyd
25	qiix	qi	ejxiv	xli	xske	tevxc

DHHW DH DTWHII WKH WD.TD SDIIWI

MONOALPHABETIC SUBSTITUTION CIPHER

- Could shuffle (jumble) the letters arbitrarily
- Each plaintext letter maps to a different random ciphertext letter

Original letter: a b c d e f g h i j k l m n o p q r s t u v w x y z Random key: D K VQ F I B J W P E S C X H T M Y A U O L R G Z N

Plaintext: if we wish to replace letters Ciphertext: WI RF RWAJ UH YFTSDVF SFUUFYA

MONOALPHABETIC CIPHER SECURITY

- The key size is 26 letters long
- 26! different permutations
- Each permutation considered a key
- Key space contains 26! = 4x10²⁶ keys, difficult to try every possible key
- With so many keys, you might think it is secure

WRONG!!! Problem is language characteristics!

ENGLISH LETTER FREQUENCIES

GOBIERNO DE ESPAÑA MINISTERIO

DE EDUCACIÓN Y FORMACIÓN PROFESIONAL

nk)r

VIGENÈRE CIPHER

- Another way to improve on the simple monoalphabetic technique is to use different monoalphabetic substitutions as one proceeds through the plaintext message.
- Simplest polyalphabetic substitution cipher is the Vigenère Cipher

 $C_i = (p_i + k_{i \mod m}) \mod 26$ $p_i = (C_i - k_{i \mod m}) \mod 26$

An example with the key as 'deceptive':

key:deceptivedeceptiveplaintext:wearediscoveredsaveyourselfciphertext:ZICVTWQNGRZGVTWAVZHCQYGLMGJ

key	3	4	2	4	15	19	8	21	4	3	4	2	4	1
plaintext	22	4	0	17	4	3	8	18	2	14	21	4	17	4
ciphertext	25	8	2	21	19	22	16	13	6	17	25	6	21	1
-														

key	19	8	21	4	3	4	2	4	15	19	8	21	4
plaintext	3	18	0	21	4	24	14	20	17	18	4	11	5
ciphertext	22	0	21	25	7	2	16	24	6	11	12	6	9

VERNAM CIPHER

- The ultimate solution is to choose a key that is as long as the plaintext and has no statistical relationship to it
- Gilbert Vernam firstly introduced such a system in 1918
- The essence of this technique is the means of construction of the key, which eventually repeated

ONE-TIME PAD

- An Army Signal Corp officer, Joseph Mauborgne, proposed an improvement to the Vernam cipher that yields the ultimate in security:
 - Mauborgne suggested using a random key that is as long as the message, so that the key need not be repeated.
 - The key is to be used to encrypt and decrypt a single message and then is discarded.
 - Each new message requires a new key of the same length as the new message.
- Such a scheme is known as a one-time pad, which is unbreakable
- Problems:
 - Make large quantities of random keys
 - Safe distribution of key
 - Can only use the key **once** though

CLASSICAL TRANSPOSITION TECHNIQUES

- All the techniques examined so far involve the substitution of a ciphertext symbol for a plaintext symbol.
- A very different kind of mapping is achieved by performing some sort of permutation on the plaintext letters → Transposition

FIRST TRANSPOSITION CIPHER: SKYTALE

Inkor

SKYTALE CIPHER METHOD

- The Skytale was used in the 5th century B.C. by the Greeks.
- It consisted of a stick with a leather ribbon and the message was written lengthwise
- When the ribbon is unrolled, letters appear without order
- The only way of recovering the plaintext was rolling back the ribbon along a stick with the same diameter as the original.
- The key was the diameter.
- It is a transposition cipher because characters are the same but distributed along the text by another way

RAIL FENCE CIPHER

- Write message letters out diagonally over a number of rows
- Then read off cipher row by row
- Eg. write message "meet me after the toga party" out with a rail fence of depth 2 as:

mematrhtgpry etefeteoaat

• Giving ciphertext

MEMATRHTGPRYETEFETEOAAT

COLUMN TRANSPOSITION CIPHERS

- A more complex scheme
- Write letters of message 'attack postponed until two am' out in rows over a specified number of columns
- The order of the columns becomes the key to the algorithm

• Can be made significantly more secure by performing more than one stage of transposition.

ROTOR MACHINES

- Before modern ciphers, rotor machines (electromechanical) were the most common product cipher
- The machine consists of a set of independently rotating cylinders through which electrical pulses can flow.

ROTOR MACHINES

ROTOR MACHINES

- Single cylinder ightarrow monoalphabetic substitution
- Rotation → different monoalphabetic substitution cipher is defined
- 1 cylinder is a polyalphabetic cipher with 26 associated monoalphabetic ciphers (period of 26)
- With 3 cylinders have 26³=17576 alphabets!!
- The addition of 4th and 5th rotors results in periods of 456,976 and 11,881,376 letters, respectively.

CLASSICAL CRYPTOSYSTEMS CLASSIFICATION

56