bod ® GOBERNG MINISTERIO
"™ DEESPANA DEEDUCACION f 3
1 INIOr
. .
rkorlormacion.com
-

Laboratory 14: CA based on openssil

This laboratory covers CA creation based on openssl and a comparison with Self-
Signed Certificate.

Installations

e Follow the lab guidelines in:
Lectures_Lab/Secure_Access_Systems_and_Data_Transmission/lab14/ca.md at
master - sflOr3nz05/Lectures_Lab - GitHub

e Read use case:

Lectures_|Lab/Secure_Access_Systems_and_Data_Transmission/lab14/ca.md at
master - sflOr3nz05/Lectures_Lab - GitHub

Part 1: Self Signed-Certificates

Generate Keys and Certificate Signing Request (CSR)

1. Generate an RSA key for the CA:
openssl| genrsa -out example.org.key 2048
2. Inspect the key
opensslrsa -in example.org.key -noout -text

3. [optional] the rsa public key can be extracted from the private key:

openssl rsa -in example.org.key -pubout -out example.org.pubkey

4. [optional] public key verification
openssl rsa -in example.org.pubkey -pubin -noout -text

5. Generate a CSR:

openssl req -new -key example.org.key -out example.org.csr

https://github.com/sfl0r3nz05/Lectures_Lab/blob/master/Secure_Access_Systems_and_Data_Transmission/lab14/ca.md
https://github.com/sfl0r3nz05/Lectures_Lab/blob/master/Secure_Access_Systems_and_Data_Transmission/lab14/ca.md
https://github.com/sfl0r3nz05/Lectures_Lab/blob/master/Secure_Access_Systems_and_Data_Transmission/lab14/ca.md#a-real-world-need
https://github.com/sfl0r3nz05/Lectures_Lab/blob/master/Secure_Access_Systems_and_Data_Transmission/lab14/ca.md#a-real-world-need

bod ® GOBERNG MINISTERIO
s 9 DEESPANA DEEDUCACION
1) ¥ FORMACION PROFESIONAL

Country Name (2 letter code) [AU]:PT

State or Province Name (full name) [Some-State]:Lisboa

Locality Name (eg, city) []:Lisboa

Organization Name (eg, company) [Internet Widgits Pty Ltd]:Example Org
Organizational Unit Name (eg, section) []:

Common Mame (e.g. server FQDN or YOUR name) []:*.example.org

Email Address []:

6. Review the content of the csr file:

openssl req -in example.org.csr -noout —text

Notice that there are no extensions, to add extensions an additional config file is
needed. This makes the process a bit more complicated so when you buy a wildcard
certificate you don't usually need to specify the extension SubjectAltName for the naked
domain because the issuer will do it for you. This is an example configuration file for a
CSR:

The main section is named req because the command we are using is req
(openssl req ...)

req]

This specifies the default key size in bits. If not specified then 512 is
used. It is used if the -new option is used. It can be overridden by using

H OH O — H O

the -newkey option.
default_bits = 2048

This is the default filename to write a private key to. If not specified the
key is written to standard output. This can be overridden by the -keyout

option.

default_keyfile = oats.key

If this is set to no then if a private key is generated it is not encrypted.
This is equivalent to the -nodes command line option. For compatibility

encrypt_rsa_key is an equivalent option.

encrypt_key = no

This option specifies the digest algorithm to use. Possible values include
md5 shal mdc2. If not present then MD5 is used. This option can be overridden
on the command line.

bod ® GOBERNG MINISTERIO
" DEESPANA DEEDUCACION
: : ¥ FORMACION PROFESIONAL

default_md = shal

if set to the value no this disables prompting of certificate fields and just
takes values from the config file directly. It also changes the expected

format of the distinguished_name and attributes sections.

prompt = no

if set to the value yes then field values to be interpreted as UTF8 strings,
by default they are interpreted as ASCII. This means that the field values,
whether prompted from a terminal or obtained from a configuration file, must
be valid UTF8 strings.

utf8 = yes

This specifies the section containing the distinguished name fields to
prompt for when generating a certificate or certificate request.
distinguished_name = my_req_distinguished_name

this specifies the configuration file section containing a list of extensions
to add to the certificate request. It can be overridden by the -regexts

command line switch. See the x509v3_config(5) manual page for details of the
extension section format.

req_extensions = my_extensions

[my_req_distinguished_name]
C = PT

ST = Lisboa

L = Lisboa

Oats In The Water
*.oats.org

CN

[my_extensions]
basicConstraints=CA:FALSE
subjectAltName=@my_subject_alt_names
subjectKeyIdentifier = hash

[my_subject_alt_names]
DNS.1 = *.oats.org

DNS.2 = *.oats.net
DNS.3 = *,oats.in
DNS.4 = oats.org

Splis § GORERNO MINISTERIO
- "": DE ESPANA DE EDUCACION f H
¥ FORMACION PROFESIOMAL
a [) I
rkorlormacion.con

DNS.5 oats.net
DNS.6 = oats.in

7. Use this new config file:

openssl req -new -out oats.csr -config oats.conf

8. Because we did not specify a key, OpenSSL uses the information on our
configuration (default_bits and default_keyfile) to create one. Now we can see
that there is a Request Extensions section with our coveted Subject Alternative
Name field. Verify the csr:

openssl req -in oats.csr -noout -text
9. CAKey and self-signed Certificate
openssl genrsa -out ca.key 2048
10.Generate a self-signed certificate for the CA:
openssl req -new -x509 -key ca.key -out ca.crt

Country Name (2 letter code) [AU]:PT

State or Province MName (full name) [Some-State]:Lisboa

Locality Name (eg, city) []:Lisboa

Organization Name (eg, company) [Internet Widgits Pty Ltd]:5z CA
Organizational Unit Mame (eg, section) []:57Z CA

Common Mame (e.g. server FQDN or YOUR name) []:

Email Address []:An optional company name []:

11.Signing:

openssl x509 -req -in example.org.csr -CA ca.crt -CAkey ca.key -CAcreateserial -out
example.org.crt

12.Each issued certificate must contain a unique serial number assigned by the CA.
It must be unique for each certificate given by a given CA. OpenSSL keeps the
used serial numbers on a file, by default it has the same name as the CA
certificate file with the extension replace by srl. So a file named ca.srl is created:

bod ® GOBERNG MINISTERIO
b "": DE ESPANA DE EDUCACION
2 a ¥ FORMACION PROFESIOMNAL

cat ca.srl

13. This command produces the file example.org.crt which we can examine. Notice
the serial number, in hex is exactly the contents of the created ca.srl file.

openssl x509 -in example.org.crt -noout —text
14.Mount a basic web server:

sudo openssl s_server -key example.org.key -cert example.org.crt -www -accept
443

15.Review invalid certificate in the browser:

| hitps//192.168.64.154

. e
-cert example.org.crt -www -accept 443 Certificate Viewer: *.example.org

upported

binary [General Details
HA3B4 TLSv1.3 :TLS_CHACHA2® POLY1305_SHA256
HA256 TLSv1.2 : ECDHE-ECDSA-AES256-GCM-SHA384
GCH-SHA384 TLSv1.2 : DHE-RSA-AES256-GCM-SHA3S4 Issued To
A26-POLY1385 TLSv1.2 : ECDHE-RSA-CHACHA2@- POLY1385
POLY13@5 TLSv1.2 :ECDHE-ECDSA-AES128-GCM- SHA256 Common Name (CN) * example.org
GCM-5HA256 TLSv1.2 : DHE-RSA-AES128-GCM-SHA256 Oraanization (0] Example Org
6-SHA384 TLSv1.2 :ECDHE-RSA-AES256-SHA384 o : S
256 TLSv1.2 :ECDHE-ECDSA-AES128- SHA256 Organizational Unit (OU) <Not Part Of Certificate>
SHA256 TLSv1.2 :DHE-RSA-AES128-SHA256
6-5HA TLSv1.@ : ECDHE-RSA-AES256-SHA
A TLSv1.0 :ECOHE - ECDSA-AES128- SHA Issued By
SHA S5Lv3 :DHE-RSA-AES128-SHA
M-SHA384 TLSv1.2 :DHE-PSK-AES256-GCM-SHA3BA Common Name (CN) <Not Part Of Certificate>
POLY13@5 TLSv1.2 :DHE-PSK-CHACHA2@-POLY1385 Organization (O} Sz CA
8-POLY13@5 TLSw1.2 : AES256-GCM-SHA384 Organizational Unit(OU) SZ.CA
A384 TLSv1.2 :PSK-CHACHA2@-POLY13@5
M-5HA256 TLSv1.2 :DHE-PSK-AES128-GCM- SHA256
TLSv1.2 :PSK-AES128-GCM-SHA256 Validity Period
TLSv1.2 :AES128-5HAZ56
CBC-5HA384 TLSv1.@ : ECDHE-PSK-AES256-CBC-SHA Jesued On
BC-SHA SSLv3 1SRP-AES-256-CBC-SHA A
C-SHA384 TLSv1.@ :DHE-PSK-AES256-CBC-SHA3B4 Expires On
C-SHA S5Lv3 :DHE-PSK-AES256-CBC-SHA
TLSv1.0 :PSK-AES256-CBC-SHA384
A TLSv1.0 :ECOME-PSK-AES128-CBC-SHA256 SHA-256
CBC-SHA S5Lv3 :SRP-RSA-AES-128-CBC-SHA Fingerprints
HA TLSv1.0 :RSA-PSK-AES128-CBC-SHA256 _ , o
C-5HA256 SSLv3 :RSA-PSK-AES128-CBC- SHA Certificate 791484f9¢5214bb1698b123f0c0b3acbafa5472c 16e86fcf82dadt
C-SHA SSLv3 tAES128-SHA
A256 S5Lv3 :PSK-AES128-CBC-5HA Public Key 360378662dc77534c31828f4eecalchTc4344184b2e1b59116f1

5L end points:

S_AES_256_GCM_SHA384 TLS_CHACHA28_POLY13@5_SHA256
ECDHE-RSA-AES128-GCH-SHA256 ECDHE-ECDSA-AES256-GCM-5HA3S4

CDHE-ECDSA-CHACHA28-POLY13@5 ECDHE-RSA-CHACHA2@-POLY1305

DHE-RSA-AES256-SHA AES123-GCM-5HA256

5128-5HA AES256-5HA

HA256:RSA-PS5+5HA256 :RSA+5HAZ56: ECDSA+SHA3S4 : RSA-PS5+5HA384 : RSA+SH

ECDSA+5HA256: RSA-PS54#5HAZ56 1 RSA+5HAZ56 1 ECDSA+5HA3B4: RSA-PSS+5HAIE:

SASA:Bx11EC:X25519:P-256:P-384

9:P-256:P-384

16. Extended validation is missing, that is an extension we did not include in the
certificate that usually requires the CA to verify the legal identification of the
subject. Just to check it, we can ask the browser to export the certificate into a file
we can query with openssl: Comparte with GitHbu certificate:

bod ® GOBERNG MINISTERIO
" DEESPANA DEEDUCACION
1 : ¥ FORMACION PROFESIONAL

openssl x509 -in github.com.crt -noout —text

17.Create openssl ca configuring ca.conf:
Lectures_Lab/Secure_Access_Systems_and_Data_Transmission/lab14/ca.md at
master - sflOr3nz05/Lectures_Lab - GitHub.

we use 'ca' as the default section because we're usign the ca command
we use 'ca' as the default section because we're usign the ca command

[ca] default_ca = my_ca

[my_ca]

a text file containing the next serial number to use in hex. Mandatory.
This file must be present and contain a valid serial number.

serial = ./serial

the text database file to use. Mandatory. This file must be present though
initially it will be empty.

database = ./index.txt

specifies the directory where new certificates will be placed. Mandatory.
new_certs_dir = ./newcerts

the file containing the CA certificate. Mandatory

certificate = ./ca.crt

the file contaning the CA private key. Mandatory

private_key = ./ca.key

the message digest algorithm. Remember to not use MD5

default_md = shal

for how many days will the signed certificate be valid

default_days = 365

a section with a set of variables corresponding to DN fields

policy = my_policy

[my_policy]

https://github.com/sfl0r3nz05/Lectures_Lab/tree/master/Secure_Access_Systems_and_Data_Transmission/lab14#openssl-ca
https://github.com/sfl0r3nz05/Lectures_Lab/tree/master/Secure_Access_Systems_and_Data_Transmission/lab14#openssl-ca

bod ® GOBERNG MINISTERIO
"™ DEESPANA DEEDUCACION f 3
1 INIOr
. .
rhorbormacioncom

if the value is "match" then the field value must match the same field in the
CA certificate. If the value is "supplied" then it must be present.

Optional means it may be present. Any fields not mentioned are silently
deleted.

countryName = match stateOrProvinceName = supplied organizationName = supplied
commonName = supplied organizationalUnitName = optional commonName = supplied

[ca] default_ca = my_ca

[my_ca]

a text file containing the next serial number to use in hex. Mandatory.
This file must be present and contain a valid serial number.

serial = ./serial

the text database file to use. Mandatory. This file must be present though
initially it will be empty.

database = ./index.txt

specifies the directory where new certificates will be placed. Mandatory.
new_certs_dir = ./newcerts

the file containing the CA certificate. Mandatory

certificate = ./ca.crt

the file contaning the CA private key. Mandatory

private_key = ./ca.key

the message digest algorithm. Remember to not use MD5

default_md = shal

for how many days will the signed certificate be valid

default_days = 365

a section with a set of variables corresponding to DN fields

policy = my_policy

[my_policy]

if the value is "match" then the field value must match the same field in the

bod ® GOBERNG MINISTERIO
b "": DE ESPANA DE EDUCACION
2 a ¥ FORMACION PROFESIOMNAL

CA certificate. If the value is "supplied" then it must be present.
Optional means it may be present. Any fields not mentioned are silently
deleted.

countryName = match stateOrProvinceName = supplied organizationName = supplied
commonName = supplied organizationalUnitName = optional commonName = supplied

18.We need to setup some structure first. The configuration file expects a newcerts
directory, and the index.txt and serial files:

$ mkdir newcerts
$ touch index.txt
$ echo '01' > serial

19.We can sign the certificate:

openssl ca -config ca.cnf -out example.org.crt -infiles example.org.csr

20. If we wish to add extensions, or even to keep the extensions sentin a CSR
(openssl will remove them when signing), then we need to also include that

configuration. This is an extra configuration file oats.extensions.cnf:

basicConstraints=CA:FALSE subjectAltName=@my_subject_alt_names
subjectKeyldentifier = hash

[my_subject_alt_names] DNS.1 = *.0ats.org DNS.2 = *,0ats.net DNS.3 = *.0ats.in
DNS.4 = oats.org DNS.5 = oats.net DNS.6 = oats.in

21.And now:

openssl ca -config ca.cnf -out oats.crt -extfile oats.extensions.cnf -in
oats.csr

rkorlormacion.co

E’?% e “inior -

Using configuration from ca.cnf

Check that the request matches the signature
Signature ok

The Subject's Distinguished MName is as follows

countryhlame :PRINTABLE: 'PT"'
stateOrProvincelame :PRINTABLE: 'Lisboa’
localityName :PRINTABLE: 'Lishoa’
organizationMame :PRINTABLE: '0Oats In The Water'
commonhame :T61STRING: "*.oats.org’

Certificate is to be certified until Mar 21 81:43:11 2015 GMT (365 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [v/n]y
Write out database with 1 new entries
Data Base Updated

22.We have a certificate that includes the SubjectAltNames we wanted:
openssl x509 -in oats.crt -noout -text

23.We can verify the certificate is correct:

openssl verify -CAfile ca.crt oats.crt

	Laboratory_14: CA based on openssl
	Installations
	Part 1: Self Signed-Certificates
	Generate Keys and Certificate Signing Request (CSR)

