

1

Laboratory_12: Self-Signed Certificates and

MiTM Detection

This laboratory covers the creation and verification of self-signed certificates and

explores how they can be exploited for Man-in-the-Middle (MiTM) attacks.

Installation

• sudo apt update

• sudo apt-get install openssl –y

• openssl version

Creating Self-Signed Certificates

Part 1: Generate a Private Key

1. Create a directory for our certificates:

mkdir -p ~/ssl-lab
 cd ~/ssl-lab

2. Generate a 2048-bit RSA private key:

openssl genrsa -out server.key 2048

3. Verify the key was created:

ls -la server.key

Part 2: Create a Certificate Signing Request (CSR)

1. Generate a CSR with our private key:

openssl req -new -key server.key -out server.csr

2. Fill in the certificate information when prompted:

2

a. Country Name: SP

b. State: Navarre

c. Locality: Pamplona

d. Organization: Inkor

e. Organizational Unit: Security

f. Common Name: testserver.local

g. Email: admin@testserver.local

3. Review the Certificate Signing Request (CSR):

openssl req -text -noout -in server.csr

Part 3: Generate the Self-Signed Certificate

1. Create a self-signed certificate valid for 365 days:

openssl x509 -req -days 365 -in server.csr -signkey server.key -out server.crt

2. Verify the certificate:

openssl x509 -text -noout -in server.crt

Part 4: Create an Alternate Certificate (MiTM Scenario)

1. Generate a new private key for the attacker:

openssl genrsa -out attacker.key 2048

2. Create a CSR with the SAME Common Name as the legitimate server:

openssl req -new -key attacker.key -out attacker.csr

a. Use the same CN: testserver.local

3. Generate attacker's self-signed certificate:

openssl x509 -req -days 365 -in attacker.csr -signkey attacker.key -out

attacker.crt

mailto:admin@testserver.local

3

Part 5: Certificate Verification

1. Check the fingerprint of the legitimate certificate:

openssl x509 -fingerprint -noout -in server.crt

2. Check the fingerprint of the attacker's certificate:

openssl x509 -fingerprint -noout -in attacker.crt

Part 6: Creating a Simple HTTPS Server

1. Create a simple HTML file:

echo "<html><body><h1>Secure Server</h1></body></html>" > index.html

2. Start a simple HTTPS server with the legitimate certificate:

sudo openssl s_server -key server.key -cert server.crt -www -accept 443

3. In another terminal, test the connection:

openssl s_client -connect localhost:443

4. Stop the server (Ctrl+C) and start it with the attacker's certificate:

sudo openssl s_server -key attacker.key -cert attacker.crt -www -accept 443

5. Test the connection again and compare the certificate details:

openssl s_client -connect localhost:443 | openssl x509 -fingerprint -noout

MiTM Vulnerability Explanation

Self-signed certificates are vulnerable to MiTM attacks because:

1. They lack verification from a trusted Certificate Authority (CA)

4

2. Browsers and clients cannot distinguish between legitimate and malicious self-

signed certificates

3. Users often ignore certificate warnings

4. Attackers can create certificates with identical subject information

To mitigate these risks:

• Use certificates from trusted CAs

• Implement certificate pinning

• Educate users about certificate warnings

• Use proper certificate validation in applications

	Laboratory_12: Self-Signed Certificates and MiTM Detection
	Installation
	Creating Self-Signed Certificates
	Part 1: Generate a Private Key
	Part 2: Create a Certificate Signing Request (CSR)
	Part 3: Generate the Self-Signed Certificate
	Part 4: Create an Alternate Certificate (MiTM Scenario)
	Part 5: Certificate Verification
	Part 6: Creating a Simple HTTPS Server

	MiTM Vulnerability Explanation

