

1

Laboratory_09: GPG Encryption: A Comprehensive Guide
to Securing Data Transfers

Step 1: Setting Up GPG Keys

Generating Keys on the Server

To encrypt data, the server needs a key pair:

$ gpg --full-generate-key

• Follow the prompts to:

Select key type: choose “RSA and RSA”.

$ gpg --full-generate-key
Please select what kind of key you want:
 (1) RSA and RSA (default)
 (2) DSA and Elgamal
 (3) DSA (sign only)
 (4) RSA (sign only)
Your selection? (1)

• Specify key size: a 4096-bit key is recommended for maximum security.

RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (4096)

• Set an expiration date: optional but enhances security.

Please specify how long the key should be valid.
 0 = key does not expire
 <n> = key expires in n days
 <n>w = key expires in n weeks
 <n>m = key expires in n months
 <n>y = key expires in n years
Key is valid for? (365)

• Enter user details: provide an email address for key identification.

GnuPG needs to construct a user ID to identify your key.

2

Real name: The Flying Gibbon
Email address: the-flying-gibbon@example.com
Comment: Medium
You selected this USER-ID:
 "The Flying Gibbon (Medium) <the-flying-gibbon@example.com>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit?

Now, you’ll be prompted to set a passphrase to secure the private key: use a strong and memorable

passphrase to ensure security.

After generation, export the server’s public key to share with the client:

gpg --export --armor the-flying-gibbon@example.com > server-public.key

Key Management Best Practices

• Backup private keys: store them securely in an offline location.

• Use strong passphrases: protect the private key with a robust passphrase.

• Key revocation: generate a revocation certificate to disable the key if it’s compromised.

gpg --gen-revoke the-flying-gibbon@example.com > revocation-certificate.asc

Step 2: Encrypting the File on the Client

Importing the Server’s Public Key

The client imports the server’s public key to encrypt data:

gpg --import server-public.key

Encrypting a File

Suppose the client needs to send a file named sensitive_data.txt:

gpg --encrypt --recipient the-flying-gibbon@example.com sensitive_data.txt

This generates an encrypted file, sensitive_data.txt.gpg: the original file remains untouched.

3

File Encryption Options

To include the original filename in the encrypted file (for easier identification or to hide original

extension of the file):

gpg --encrypt --recipient the-flying-gibbon@example.com --output sensitive_data.gpg

 sensitive_data.txt

For added security, compress the file before encryption:

tar -czf sensitive_data.tar.gz sensitive_data.txt gpg --encrypt --recipient the-flying-

gibbon@example.com sensitive_data.tar.gz

Step 3: Transferring the File via SFTP

The encrypted file can now be transferred securely:

sftp user@server.com <<EOF
put sensitive_data.txt.gpg
bye
EOF

SFTP Security Considerations

• SSH configuration: use strong authentication methods like SSH keys instead of passwords.

• Limit permissions: restrict SFTP users to specific directories using chroot.

• Audit logs: monitor file transfer activity for suspicious behavior.

Step 4: Decrypting the File on the Server

Once the file is transferred, the server decrypts it using the private key:

gpg --decrypt sensitive_data.txt.gpg > sensitive_data.txt

If you specified a passphrase during the key pair generation, GPG will prompt you to enter the

passphrase during the decryption process with a message similar to this:

gpg: key 1234ABCD: public key decryption failed: bad passphrase
 Enter passphrase:

If the file is correctly encrypted, the passphrase is correct and the private key matches, the server

will recover the original file.

	Laboratory_09: GPG Encryption: A Comprehensive Guide to Securing Data Transfers

